WFIRST Will Use Warped Space-time to Help Find Exoplanets

The NASA mission will identify planets with large orbits, similar to our solar system’s far-flung giants, Uranus and Neptune.

NASA’s Wide Field Infrared Survey Telescope (WFIRST) will search for planets outside our solar system toward the center of our Milky Way galaxy, where most stars are. Studying the properties of exoplanet worlds will help us understand what planetary systems throughout the galaxy are like and how planets form and evolve.

Combining WFIRST’s findings with results from NASA’s Kepler and Transiting Exoplanet Survey Satellite (TESS) missions will complete the first planet census that is sensitive to a wide range of planet masses and orbits, bringing us a step closer to discovering habitable Earth-like worlds beyond our own.

To date, astronomers have found most planets when they pass in front of their host star in events called transits, which temporarily dim the star’s light. WFIRST data can spot transits, too, but the mission will primarily watch for the opposite effect – little surges of radiance produced by a light-bending phenomenon called microlensing. These events are much less common than transits because they rely on the chance alignment of two widely separated and unrelated stars drifting through space.

“Microlensing signals from small planets are rare and brief, but they’re stronger than the signals from other methods,” said David Bennett, who leads the gravitational microlensing group at NASA’s Goddard Space Flight Center in Greenbelt, Maryland. “Since it’s a one-in-a-million event, the key to WFIRST finding low-mass planets is to search hundreds of millions of stars.”

In addition, microlensing is better at finding planets in and beyond the habitable zone – the orbital distances where planets might have liquid water on their surfaces.

Microlensing 101

This effect occurs when light passes near a massive object. Anything with mass warps the fabric of space-time, sort of

This post was originally published by NASA JPL News on . Please visit the original post to read the complete article.