Revisiting Decades-Old Voyager 2 Data, Scientists Find One More Secret

The ice giant Uranus appears to be losing a bit of its atmosphere to space, perhaps siphoned away by the planet’s magnetic field.

Eight and a half years into its grand tour of the solar system, NASA’s Voyager 2 spacecraft was ready for another encounter. It was Jan. 24, 1986, and soon it would meet the mysterious seventh planet, icy-cold Uranus.

Over the next few hours, Voyager 2 flew within 50,600 miles (81,433 kilometers) of Uranus’ cloud tops, collecting data that revealed two new rings, 11 new moons and temperatures below minus 353 degrees Fahrenheit (minus 214 degrees Celsius). The dataset is still the only up-close measurements we have ever made of the planet.

Three decades later, scientists reinspecting that data found one more secret.

Unbeknownst to the entire space physics community, 34 years ago Voyager 2 flew through a plasmoid, a giant magnetic bubble that may have been whisking Uranus’ atmosphere out to space. The finding, reported in Geophysical Research Letters, raises new questions about the planet’s one-of-a-kind magnetic environment.

A Wobbly Magnetic Oddball

Planetary atmospheres all over the solar system are leaking into space. Hydrogen springs from Venus to join the solar wind, the continuous stream of particles escaping the Sun. Jupiter and Saturn eject globs of their electrically-charged air. Even Earth’s atmosphere leaks. (Don’t worry, it will stick around for another billion years or so.)

The effects are tiny on human timescales, but given long enough, atmospheric escape can fundamentally alter a planet’s fate. For a case in point, look at Mars.

“Mars used to be a wet planet with a thick atmosphere,” said Gina DiBraccio, space physicist at NASA’s Goddard Space Flight Center and project scientist for the Mars Atmosphere and Volatile Evolution, or MAVEN mission. “It evolved over time” – 4 billion years of leakage

This post was originally published by NASA JPL News on . Please visit the original post to read the complete article.

Reply